Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642486

RESUMEN

Crop residue management has become more challenging with intensive agricultural operations. Zero tillage and crop residue returns, along with the enhancement of in-situ residue decomposition through microbial intervention, are essential measures for preserving and enhancing soil quality. To address this problem in view of stubble burning, field experiments were conducted in rice-rice (variety Swarna) cropping systems under lowland conditions, wherein the following different residue management practices were adopted viz., conventional cultivation (CC), residue incorporation (RI @ 6 t paddy straw ha-1), residue retention (RR @6 t paddy straw ha-1), and zero tillage (ZT). In this experiment, two microbial products i.e. solid microbial consortium (SMC) at 2.0 kg ha-1) and capsule (10 numbers ha-1), were evaluated in both Rabi (dry) and Kharif (wet) seasons under different residue management practices. The results on soil microbial properties showed that application of either SMC or capsule based formulation could significantly improve the soil organic carbon (SOC) content in ZT (9.51 g/kg), followed by RI (9.36 g/kg), and RR (9.34 g/kg) as compared to CC (7.61 g/kg). There were significant differences in the soil functional properties (AcP, AkP, FDA, and DHA) with microbial interventions across all residue management practices. SOC was significantly positive correlated with cellulase (R2 = 0.64, p < 0.001), ß-glucosidase (R2 = 0.61, p < 0.001), and laccase (R2 = 0.66, p < 0.001) activity; however, the regression coefficients varied significantly with microbial intervention. Moreover, the availability of N, P, and K in soil was significantly (p < 0.05) improved under microbial treatments with either RR or RI practices. Among the different methods of residues management practices, RI with microbial intervention registered a consistent yield improvement (8.4-17.8%) compared to conventional practices with microbial intervention. The present findings prove that the application of decomposing microbial consortia for in-situ rice residue management under field conditions significantly enhances soil quality and crop yield compared to conventional practices.


Asunto(s)
Agricultura , Oryza , Microbiología del Suelo , Suelo , Oryza/crecimiento & desarrollo , India , Suelo/química , Agricultura/métodos , Productos Agrícolas
2.
Curr Res Microb Sci ; 6: 100229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525307

RESUMEN

Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.

3.
Hum Genet ; 143(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37999799

RESUMEN

Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Epigénesis Genética , Metilación de ADN , Histonas/genética , Predisposición Genética a la Enfermedad , India/epidemiología , Complicaciones de la Diabetes/complicaciones , Complicaciones de la Diabetes/epidemiología , Complicaciones de la Diabetes/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-37126112

RESUMEN

Phenolic compounds are the major contaminants identified from various industrial effluents, which pose an extreme threat to the environment. Therefore, investigating an effective technique to remove these toxic phenolic compounds from the contaminated environment is very essential. In the present investigation, batch tests were performed to assess the biodegradation of phenol using an indigenous Rhodococcus pyridinivorans strain PDB9T NS-1 encapsulated in a calcium alginate bead system. In order to improve the mechanical stability, silica was added to the cell-embedded Ca-alginate beads. The impact of experimental conditions such as contact time, pH, and initial phenol doses was investigated. The biodegradation of phenol was examined over a wide range of phenol, and the results showed that more than 99.6% degradation was achieved at an initial phenol dose of 1000 mg/L in 70 h at 30 °C. Among the various sorption isotherm tested, the Freundlich isotherm was the best fitted to the experimental data. This behavior indicated a multilayer biosorption process and was controlled by heterogeneous surface energy. Based on an intra-particle diffusion model, internal mass transfer or pore diffusion predominated over exterior mass transfer in controlling the entire phenol biosorption process. The biosorption of phenol onto the cell encapsulated in the Ca-alginate bead follows pseudo-first-order kinetics with a superior phenol biosorption capacity of 155 mg/g of Ca-alginate. Further stability study revealed that the bead could be recycled successfully without any substantial decline in phenol degradation efficiency, indicating that the immobilized microbe possesses exceptional operating stability.

5.
Heliyon ; 9(3): e13825, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873502

RESUMEN

Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.

6.
Plant Physiol Biochem ; 196: 103-120, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706690

RESUMEN

The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Nanopartículas/química , Agricultura/métodos , Nanotecnología , Antibacterianos , Medición de Riesgo , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...